Abstract

We obtained an analytical expression for the average motion velocity of an adiabatic Brownian motor (ratchet), which operates due to small dichotomous spatially harmonic fluctuations of a stepwise potential. The symmetry properties of the average velocity as a functional of the stationary and fluctuating components of the nanoparticle potential energy are revealed, and the ranges of values of the system parameters that ensure the rightward and leftward motion of the motor are determined. We showed that the average motor velocity is a non-monotonic function of the stepwise potential height. For a singular (infinitely high and narrow) potential barrier, the average velocity depends non-monotonically on the «power» of this barrier (the barrier width multiplied by the exponent of the ratio of the barrier height to the thermal energy). The article continues the further development of theoretical methods of symmetry analysis by applying the general approaches proposed by the authors to specific motor systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.