Abstract

We study the relation between the models commonly used to describe the dynamics of nonresonantly pumped exciton-polariton condensates, namely the ones described by the complex Ginzburg-Landau equation, and by the open-dissipative Gross-Pitaevskii equation including a separate equation for the reservoir density. In particular, we focus on the validity of the adiabatic approximation and small density fluctuations approximation that allow one to reduce the coupled condensate-reservoir dynamics to a single partial differential equation. We find that the adiabatic approximation consists of three independent analytical conditions that have to be fulfilled simultaneously. By investigating stochastic versions of the two corresponding models, we verify that the breakdown of these approximations can lead to discrepancies in correlation lengths and distributions of fluctuations. Additionally, we consider the phase diffusion and number fluctuations of a condensate in a box, and show that self-consistent description requires treatment beyond the typical Bogoliubov approximation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.