Abstract

In this article we survey the recent developments in ADHM sheaf theory on a smooth projective variety $X$. When $X$ is a curve the theory is an alternative construction of stable pair theory of Pandharipande and Thomas or Gromov–Witten theory on local curve geometries. The construction relies on relative Beilinson spectral sequence and Fourier–Mukai transformation. We will present some applications of the theory, including the derivations of the wallcrossing formulas, higher rank Donaldson–Thomas invariants on local curves, and the coholomogies of the moduli of stable Hitchin pairs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.