Abstract
In the present paper, the following topics are reviewed in detail: (a) the available adhesives, as well as their recent advances, (b) thermodynamic factors affecting the surface pretreatments including adhesion theories, wettability, surface energy, (c) bonding mechanisms in the adhesive joints, (d) surface pretreatment methods for the adhesively bonded joints, and as well as their recent advances, and (e) combined effects of surface pretreatments and environmental conditions on the joint durability and performance. Surface pretreatment is, perhaps, the most important process step governing the quality of an adhesively bonded joint. An adhesive is defined as a polymeric substance with viscoelastic behavior, capable of holding adherends together by surface attachment to produce a joint with a high shear strength. Adhesive bonding is the most suitable method of joining both for metallic and non-metallic structures where strength, stiffness and fatigue life must be maximized at a minimum weight. Polymeric adhesives may be used to join a large variety of materials combinations including metal-metal, metal-plastic, metal-composite, composite-composite, plastic-plastic, metal-ceramic systems. Wetting and adhesion are also studied in some detail in the present paper since the successful surface pretreatments of the adherends for the short- and long-term durability and performance of the adhesive joints mostly depend on these factors. Wetting of the adherends by the adhesive is critical to the formation of secondary bonds in the adsorption theory. It has been theoretically verified that for complete wetting (i.e., for a contact angle θ equal to zero), the surface energy of the adhesive must be lower than the surface energy of the adherend. Therefore, the primary objective of a surface pretreatment is to increase the surface energy of the adherend as much as possible. The influence of surface pretreatment and aging conditions on the short- and long-term strength of adhesive bonds should be taken into account for durability design. Some form of substrate pretreatment is always necessary to achieve a satisfactory level of long-term bond strength. In order to improve the performance of adhesive bonds, the adherends surfaces (i.e., metallic or non-metallic) are generally pretretead using the (a) physical, (b) mechanical, (c) chemical, (d) photochemical, (e) thermal, or (e) plasma method. Almost all pretreatment methods do bring some degree of change in surface roughness but mechanical surface pretreatment such as grit-blasting is usually considered as one of the most effective methods to control the desired level of surface roughness and joint strength. Moreover, the overall effect of mechanical surface treatment is not limited to the removal of contamination or to an increase in surface area. This also relates to changes in the surface chemistry of adherends and to inherent drawbacks of surface roughness, such as void formations and reduced wetting. Suitable surface pretreatment increases the bond strength by altering the substrate surface in a number of ways including (a) increasing surface tension by producing a surface free from contaminants (i.e., surface contamination may cause insufficient wetting by the adhesive in the liquid state for the creating of a durable bond) or removal of the weak cohesion layer or of the pollution present at the surface, (b) increasing surface roughness on changing surface chemistry and producing of a macro/microscopically rough surface, (c) production of a fresh stable oxide layer, and (d) introducing suitable chemical composition of the oxide, and (e) introduction of new or an increased number of chemical functions. All these parameters can contribute to an improvement of the wettability and/or of the adhesive properties of the surface.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.