Abstract

Modeling the interface between two adherents in a co-cured composite joint for a delamination analysis is always a challenge since properties and thickness of the material forming the interface are not clearly defined or well characterized. In a conventional finite element (FE) analysis using virtual crack closure technique (VCCT) based on a linear elastic fracture mechanics (LEFM) theory, adherents are assigned to share the same common nodes along their intact interface. On the other hand, an FE analysis using cohesive elements or analytical methods based on an adhesive joint model for a delamination analysis of a co-cured joint will require modeling of the interface as well as the appropriate selection of its thickness and properties. The purpose of this paper is to establish the applicability and limitation of the adhesive joint model for a delamination analysis of a co-cured composite joint. In particular, it will show that when certain requirements are met, the strain energy release rates (SERR) become independent or nearly independent of the adhesive stiffness and thickness, and thus, SERR of an adhesive joint will be the same as that for a co-cured joint. These requirements are determined from a theoretical consideration, and they can be expressed explicitly in terms of joint characteristic (or load transfer) lengths and joint physical lengths. The established requirements are further validated by numerical results for various cracked joint geometries. Finally, implication of a mode ratio obtained by the proposed adhesive joint model for a corresponding delamination crack is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.