Abstract

Creating tissue-mimetic biomaterials able to deliver bioactive compounds after receipt of a remote and non-invasive trigger has so far proved to be challenging. The possible applications of such "smart" biomaterials are vast, ranging from subcutaneous drug delivery to tissue engineering. Self-assembled phospholipid vesicles (liposomes) have the ability to deliver both hydrophilic and hydrophobic drugs, and controlling interactions between functionalized vesicles and cells within biomaterials is an important step for targeted drug delivery to cells. We report an investigation of the interactions between thermally-sensitive and biotin-coated dipalmitoyl phosphatidylcholine vesicles and 3T3 fibroblast cells. The stability of these vesicles under physiological conditions was assessed and their interaction with the cell membranes of fibroblasts in media and alginate/fibronectin mixtures was studied. Stable vesicle-cell aggregates were formed in fluid matrices, and could be a model system for improving the delivery of remotely released drugs within vesicle-containing biomaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.