Abstract

Adhesion and friction of soft solids on hard surfaces are the important properties for a variety of practical applications. In the present study, Coulomb's law of friction is used for characterizing adhesive friction as well as normal stress-dependent dynamic friction of a gelatin hydrogel on a fixed glass surface. The experimental data, concerning normal stress-dependent dynamic friction of different shear velocity, are obtained from literature. It is observed that both components of friction increase with shear velocity. More importantly, the scaling law shows that adhesive stress varies almost linearly with corresponding coefficient of friction of the hydrogel. A dynamic friction model is also used to analyze the same experimental data to predict a negative normal stress at which dynamic friction reduces to zero, and this result matches closely with the experimental value.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call