Abstract
GnRH neurons migrate into the hypothalamus during development. Although migratory defects may result in disordered activation of the reproductive axis and lead to delayed or absent sexual maturation, specific factors regulating GnRH neuronal migration remain largely unknown. The receptor tyrosine kinase, adhesion-related kinase (Ark) (also known as Axl, UFO, and Tyro7), has been implicated in the migration of GnRH neuronal cells. Binding of its ligand, growth arrest-specific gene 6 (Gas6), promotes cytoskeletal remodeling and migration of NLT GnRH neuronal cells via Rac and p38 MAPK. Here, we examined the Axl effectors proximal to Rac in the signaling pathway. Gas6/Axl-induced lamellipodia formation and migration were blocked after phosphatidylinositol-3-kinase (PI3K) inhibition in GnRH neuronal cells. The p85 subunit of PI3K coimmunoprecipitated with Axl and was phosphorylated in a Gas6-sensitive manner. In addition, PI3K inhibition in GnRH neuronal cells diminished Gas6-induced Rac activation. Exogenous expression of a dominant-negative form of Ras also decreased GnRH neuronal lamellipodia formation, migration, and Rac activation. PI3K inhibition blocked Ras in addition to Rac activation and migration. In contrast, pharmacological blockade of the phospholipase C gamma effectors, protein kinase C or calcium/calmodulin protein kinase II, had no effect on Gas6/Axl signaling to promote Rac activation or stimulate cytoskeletal reorganization and migration. Together, these data show that the PI3K-Ras pathway is a major mediator of Axl actions upstream of Rac to induce GnRH neuronal cell migration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.