Abstract

Abstract LaRC-TPI, an aromatic thermoplastic polyimide, was exposed to oxygen, argon and ammonia plasmas as pretreatments for adhesive bonding. Chemical changes which occurred in the surface as a result of the plasma treatments were investigated using x-ray photoelectron spectroscopy (XPS) and infrared reflection-absorption spectroscopy (IR-RAS). Water contact angle analysis was utilized to characterize the changes in surface wettability, and the ablative effects of the plasmas were monitored using ellipsometry. Both XPS and IR-RAS results indicated the formation of polar functional groups at the surface. Contact angle analysis showed enhanced water wettability of the plasma-treated surface. Oxygen and argon plasmas were highly ablative, whereas ammonia plasma was only moderately so. Oxygen and argon plasmas appear to react with the LaRC-TPI via a fragmentation/oxidation mechanism; the effect of ammonia plasma is postulated to be imide ring-opening resulting in the formation of amide functional groups.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call