Abstract

We report a direct measurement of the adhesion strength of human embryonic tenocytes (HETCs) and transformed human embryonic tenocytes (THETCs) to fibronectin (FN)- and type I collagen (CNI)- modified poly( dl-lactide- co-glycolide) (PLGA) substrates with a micropipette aspiration technique. PLGA substrates were first coated with poly- d-lysine (PDL), and then with various concentrations (1 μg/ml, 2 μg/ml, 5 μg/ml, and 10 μg/ml) of FN and CNI in serum-free F12 media. Anti-FN and Anti-CNI antibodies were used to inhibit attachment of tenocytes to FN- and CNI- modified substrates in a dilution range of 1:5000–1:500 and 1:1500–1:250, respectively. The substrates were employed for incubation of HETCs and THETCs for 30 min at 37 °C before the adhesion strength measurements. We found that the adhesion strengths showed a strong dependence on the seeding time and FN or CNI concentrations. Anti-FN and Anti-CNI antibodies significantly compromised adhesion of HETCs and THETCs to the corresponding modified substrates ( P < 0.05 ). These findings show that FN- or CNI-modified polymer substrates offer significant advantages for tissue engineering tendon scaffolds concerning tenocyte adhesion. In addition, HETCs and THETCs bear similar biological behaviors in terms of adhesion, indicating the possibility of using THETCs in place of HETCs in tissue engineering construction of human tendons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.