Abstract
ABSTRACT The aim of this paper is to investigate the adhesion of municipal solid waste incinerator bottom ash (MSWIBA) and limestone to asphalt using the principles of surface energy theory. MSWIBA asphalt mixes are known for their satisfactory water stability, with adhesion being a crucial factor, as demonstrated in previous freeze-thaw splitting tests. Contact angles of ground MSWIBA and limestone were measured using a capillary rise test, eliminating the influence of material surface structure. Subsequently, adhesion work and spalling work were calculated to correlate with water-induced damage. The results showed that the sequence of adhesion work was fine MSWIBA > limestone > coarse MSWIBA, while the sequence of spalling work was coarse MSWIBA > limestone > fine MSWIBA. The adhesion of MSWIBA asphalt mixes was evaluated using the water boiling test image method to validate the findings of surface energy theory. In both asphalt tests, the spalling rate followed this sequence: coarse MSWIBA > limestone > fine MSWIBA. The Adhesion index ER ranked as follows: ER Fine MSWIBA > ER limestone > ER coarse MSWIBA. These results suggest that the water stability of MSWIBA asphalt mixes is influenced by the surface energy of the components. Consequently, indices derived from surface energy theory can be applied in formulating and predicting the properties of MSWIBA asphalt mixes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.