Abstract
We have investigated the adhesion properties of microcrystalline diamond thin films on Ti-Al-V alloy, Co-Cr-Mo alloy and steel. Microcrystalline diamond possesses high hardness, a low coefficient of friction, extreme chemical inertness and biocompatibility; these properties can enhance the performance of metal alloys used in medical implants and in machine tools. We have adopted three methods for improving the adhesion of microcrystalline diamond to commonly used metal alloys: (1) by alloying the substrate surface to minimize graphitization; (2) by employing appropriate buffer layers between the diamond film and the substrate; and (3) by creating functionally gradient diamond-(titanium carbide, tungsten carbide, titanium nitride and aluminum nitride) composites. We have demonstrated that functionally gradient discontinuous buffer layers of titanium carbide, titanium nitride, aluminum nitride and tungsten carbide are able to control stress and graphitization in microcrystalline diamond thin films. This work on buffer layers and functionally gradient coatings should allow the development of more adherent crystalline diamond films for medical and tribological applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.