Abstract

In this study, high-density polyethylene (HDPE) surfaces were treated with plasma to enhance the adhesion of a water-based paint. A custom-built cold atmospheric pressure plasma jet (CAPPJ) device using a neon transformer as its power source was developed and used in the surface treatment. The jet nozzle of the device was made from polytetrafluoroethylene with two bare stainless-steel electrodes positioned laterally through the nozzle and opposite each other with a 1 mm gap. Gas was allowed to pass through the nozzle, exiting through a 1 mm diameter hole where a plasma jet is ejected through the arc from the electrodes. The effect of plasma treatment on HDPE surfaces was determined. Air and nitrogen were used as the process gases and exposure times were also varied. Hydrophilicity of the surface increased with longer plasma exposure with a corresponding 50% increase in surface free energy compared to the untreated surface. From Fourier transform infrared and x-ray photoelectron spectroscopy analysis, it was seen that plasma treatment introduced oxygen containing functionalities onto the surface. Increase in adhesion of a water-based paint was observed for plasma-treated HDPE sheets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call