Abstract

The aim of this in vitro study was to evaluate the adhesion strength of two new fiber post systems (FiberSite™ Post and Cytec™ Blanco Post) cemented with two different adhesive resin cements (Panavia™ SA and Maxcem™ Elite). Root canals of sixty extracted human mandibular premolars were prepared using ProTaper Universal™ rotary files (Dentsply Sirona Endodontics, York, PA, USA). The root canals were irrigated with 5.25% sodium hypochlorite (NaOCl) during instrumentation. After root canal preparation, the canals were irrigated with 2 mL of 17% EDTA (1 min), followed by 2 mL of 5.25% (5 min) NaOCI, and 2 mL saline. The root canals were dried with paper points and divided randomly into two study groups (n = 30) according to the type of post system: Group 1, FiberSite™ Post (MegaDental, Partanna, Italy); and group 2, Cytec™ Blanco Post (Hahnenkratt, Königsbach-Stein, Germany), with one of the two adhesive resin cements: Subgroup A, Panavia™ SA Cement Plus Automix (Kuraray, Osaka, Japan); subgroup B, Maxcem™ Elite (Kerr, Orange, CA, USA). Following thermocycling, the adhesion strength was evaluated using the push-out adhesion (bond) strength test. Fractographic analysis was performed using stereomicroscope. The data were analyzed using two-way analysis of variance (p = 0.05). The adhesion strength values of both the posts were significantly higher when cemented with subgroup B (Maxcem™ Elite). The highest adhesion strength value was demonstrated by group 1B (FiberSite™ post cemented with Maxcem™ Elite cement). The type of post did not have a significant impact on the bond strength values for either cement material.

Highlights

  • Root canal treated teeth with extensive loss of tooth structure oftentimes need a synthetic post to retain the core that will be built up

  • The highest adhesion strength value was demonstrated by group 1B

  • Clinical difficulties in terms of preparation time, aesthetics, and the potential mismatch in the elastic modulus of these posts compared to the root dentin, have resulted in the search and development of alternative post systems

Read more

Summary

Introduction

Root canal treated teeth with extensive loss of tooth structure oftentimes need a synthetic post to retain the core that will be built up. Metallic posts have been the longest standing in terms of availability. Clinical difficulties in terms of preparation time, aesthetics, and the potential mismatch in the elastic modulus of these posts compared to the root dentin, have resulted in the search and development of alternative post systems. In contemporary dental practice and adhesive dentistry, one of the most commonly used post systems is the E-glass fiber-reinforced composite resin (FRC) post [2]. E-glass fibers are silanized for durability and adhesion with the resinous matrix [3]. The elastic modulus of these posts is closer to dentin than metallic posts, thereby mitigating the risk of vertical fractures of root canal treated

Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call