Abstract

Of the three essential functions of tablet lubricants, only the true lubricant and glidant properties have been studied in detail by objective means. Only recently has instrumentation which permits the objective measurement of the antiadhesion activity in a rotary tablet press been developed. Using a rotary press instrumented to measure the adhesion of tablets to the lower punch face, this study focuses on the adhesion of tablets in two direct compression systems. At any given compression force, adhesion of microcrystalline cellulose tablets lubricated with magnesium stearate appeared to decrease with increases in blending time or intensity of blending. Over a three-hour running time, adhesion force was found to increase to peak values and then to decline with both microcrystalline cellulose and hydrous lactose lubricated with magnesium stearate. However, ejection forces decreased gradually to apparently limiting values in each case. The adhesion of tablets to the lower punch face appeared to be affected partly by the condition of the tablet - die wall interface. Studies comparing lubricated and unlubricated microcrystalline cellulose suggest two opposing effects on tablet adhesion: (1) enhancing adhesion due to an increased reaction at the lower punch resulting from reduced die wall friction; and, (2) reducing the adhesion of tablets via the “antiadherent” effect. At the lubricant levels studied, stearic acid generally appeared to be less efficient than magnesium stearate in reducing both the adhesion and ejection forces in microcrystalline cellulose blends. However, with hydrous lactose blends, the true lubricant and antiadherent activities of stearic acid appeared to be greater than those of magnesium stearate at the 1.00% level of addition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.