Abstract

Adhesion studies of Staphylococcus epidermidis RP62A were conducted using a rotating disk system to determine the roles of surface physicochemistry and topographies under physiologic shear conditions. Six materials were investigated: biomedical reference polyethylene and polydimethylsiloxane; argon plasma-treated reference polyethylene (Ar-PE); Silastic; expanded polytetrafluoroethylene; and woven Dacron. All of the polymers except Dacron demonstrated reduced bacterial adhesion with increasing shear stress. Argon plasma treatment of polyethylene reduced the level of staphylococcal adhesion. Adsorption of human plasma proteins effected significantly lower numbers of adherent bacteria. The lowest adhesion was observed for Ar-PE in 1% human plasma protein solution, whereas Dacron had the highest number of adherent bacteria. The high adhesion on Dacron was attributed to increased bacterial flux caused by topography-induced turbulent flow and physical entrapment of the bacteria in the fiber interstices. The results indicate that the driving force for S. epidermidis adhesion is strongly influenced by substrate physicochemistry, but this may be dominated by physical forces such as shear and turbulence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call