Abstract
A series of austenitic alloys (800H, H214, I625, 310S, and 347) with different surface finishes were exposed to supercritical water (SCW) at 550 °C and 2.5 × 107 Pa for 120 h, 260 h, and 450 h in a static autoclave with an initial level of dissolved oxygen of 8 ppm. Indentation with a hardness indenter was used for assessment of oxide adhesion. This was compared with the results of a similar test on SCW-oxidized ferritic alloys. Delamination in all the tested ferritic alloys was insufficient for quantification of the results but allowed for qualitative comparison within this group. In the set of austenitic alloys, oxide on stainless steel (SS) 347 exfoliated during cooling from 550 °C, and from the remaining four alloys, only oxide on H214 delaminated, which made the qualitative comparison across the whole group impossible. Energy dispersive X-ray spectroscopy (EDX) revealed that under delaminated external Cr2O3 on H214 alloy, there was a submicron thick layer of Al-rich oxide. To investigate a possible oxide spallation on austenitic samples during exposure, mass loss obtained through descaling was compared with mass gain due to SCW exposure. The results indicated that the applied descaling procedure did not, in most cases, fully remove the scale. Apart from one case (SS 347 with alumina surface finish), there was no clear indication of oxide spallation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Nuclear Engineering and Radiation Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.