Abstract

We studied the sequence of phenomena which occur when a solid microsphere is brought in contact with an isolated giant lipid vesicle. We used Latex beads, a few microns in diameter, which were manipulated individually by means of a long-working-distance optical trap. The evolution of the bead/vesicle system was characterized in time, from ∼ 1 ms to ∼ 100 s. In this time range, we identified different steps, namely adhesion, ingestion, expulsion and re-capture. In the adhesion step the sphere moves quickly in direction to the vesicle interior and the surface of the particle becomes wetted by lipids. We propose a simple model, based on the counter-balance between adhesion and stretching of the lipid lamella, which explains the experimental equilibrium configuration. The bead/vesicle configuration after the adhesion step pertains to partial or complete wetting, depending on the initial vesicle state. Partial wetting can be followed by a second step, which we named particle ingestion, and which leads to complete (or nearly complete) wetting of the particle surface. Ingestion is characterized by a further penetration of the particle across the vesicle contour, in concomitance with a decrease of the vesicle size. The phenomenon is attributed to the occurrence of a dynamically stabilized pore across the membrane, which allows part of the water initially inside the vesicle to flow out. Ingestion can be followed by a back and forth movement (expulsion and re-capture) of the particle. In the ultimate configuration, the solid surface is totally wetted by lipids, however with a finite contact angle between the membrane and the solid surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call