Abstract

Abstract The adhesion of plasma-sprayed coating is to a large extent controlled by the cleanness and roughness of the surface on which the coating is deposited. So, most of the plasma spray procedures involve surface pretreatment by grit-blasting to adapt the roughness of the surface to the size of the impacting particles. This preparation process brings about compressive stresses that make it inappropriate for thin substrates. The present works aims to elaborate a ceramic coating on a thin metal substrate with a smooth surface. The coating system is intended for use in a generation–IV nuclear energy system. It must exhibit a good adhesion between the ceramic topcoat (about 0.5-mm thick) and the smooth metal substrate (1-mm thick) to meet the specifications of the application. Our approach has consisted in depositing the ceramic layer on a few micrometers thick ceramic layer made by suspension spraying. We have observed the interface between both ceramic layers by transmission electronic microscope and studied the adhesion of the nanostructured layer by the Vickers Indentation Cracking technique and that of the coating system by tensile test.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call