Abstract

Candida albicans is a commensal organism that under certain circumstances can become pathogenic. During systemic infection C. albicans is disseminated via the circulation to distant organs, where it causes multiple organ failure. Despite the severity of systemic C. albicans infection, little is known about the mechanisms involved in the adhesion of this organism to the endothelium lining blood vessels. Previous studies have used static assays to examine adhesion. However, these do not realistically model blood vessels, where circulating C. albicans cells must adhere to the endothelium under conditions of flow and shear stress. Furthermore, there is conflicting evidence concerning the role played by yeast, pseudohyphal, and hyphal forms of C. albicans in adhesion to endothelium. To test the hypothesis that there may be differences in the abilities of these three morphogenic forms of C. albicans to adhere to endothelium under conditions of flow, we developed an in vitro flow adhesion assay. We found that all three forms of C. albicans rapidly bound to confluent endothelial cells under conditions of flow. Maximum adhesion was found at low shear stress levels similar to that found in postcapillary venules. Moreover, yeast forms bound in significantly greater numbers than did pseudohyphal and hyphal forms, respectively, contrasting with previous findings from static assays. These findings are consistent with recent in vivo data suggesting that yeast forms may be capable of adhering to the endothelium and migrating into the tissues before undergoing morphogenic change to cause tissue damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.