Abstract
Proteins and glycosaminoglycans (GAGs) are the main constituents of the extracellular matrix (ECM). They act in synergism and are equally critical for the development, growth, function, or survival of an organism. In this work, we developed surfaces that display these two classes of biomacromolecules, namely, GAGs and proteins, in a spatially controlled fashion. The generated surfaces can be used as a minimalistic but straightforward model aiding the elucidation of cell-ECM interactions. GAGs (hyaluronic acid and heparin) were covalently bound to amino functionalized surfaces, and albumin or fibronectin was patterned by microcontact printing on top of them. We demonstrate that adipose-derived stem cells (ASCs) can adhere either on the protein or on the GAG pattern as a function of the patterned molecules. ASCs found on the GAG pattern had different morphology and expressed different surface markers than the cells adhered on the protein pattern. ASCs morphology and spreading were also dependent on the size of the pattern. These results show that the developed supports can also be used for ASCs differentiation into different lineages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.