Abstract

Protein adsorption occurs on the surface of biomaterials when they are exposed to physiological environments. The protein adsorption layer induces severe biological responses, including cellular reactions. Protein adsorption layers are formed mainly by two distinct processes: monolayer adsorption of proteins on the surface and a subsequent additional adsorption on the first layer to form a multilayer. Therefore, evaluating the first protein adsorption is important to understand the biological responses on the surface of materials. In this study, we applied the atomic force microscopic (AFM) technique to directly measure the adhesion force of proteins against the surface (i.e., the interaction between proteins and surface). We also prepared hydrophilic polymer brush surfaces with well-known high repellency against protein adsorption through surface-initiated atom transfer radical polymerization. Polymer brush layers have a well-defined surface structure; therefore, it could be a good model for clarifying the relationship between the surface structure and protein adsorption behavior. The influence of chemical structure of monomer unit and thickness of polymer brush layers on the adhesion force of proteins was discussed here, while that of graft density was not discussed. The adhesion force of bovine serum albumin (BSA) immobilized on an AFM cantilever against the thin polymer brush surfaces differed from the chemical structures of the monomer unit. The adhesion force of BSA decreased with increasing thickness of the polymer brush layer, and there was little difference in the adhesion force of BSA against the thick polymer brush surfaces regardless of the chemical structure of the monomer unit. The results demonstrate that the thickness of the polymer brush layer would be an important parameter that reduced the interaction between proteins and surfaces compared with the chemical structure of the monomer unit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.