Abstract
Probe-tack measurements evaluate the adhesion strength of viscous fluids confined between parallel plates. This is done by recording the adhesion force that is required to lift the upper plate, while the lower plate is kept at rest. During the lifting process, it is known that the interface separating the confined fluids is deformed, causing the emergence of intricate interfacial fingering structures. Existing meticulous experiments and intensive numerical simulations indicate that fingering formation affects the lifting force, causing a decrease in intensity. In this work, we propose an analytical model that computes the lifting adhesion force by taking into account not only the effect of interfacial fingering, but also the action of wetting and viscous normal stresses. The role played by the system's spatial confinement is also considered. We show that the incorporation of all these physical ingredients is necessary to provide a better agreement between theoretical predictions and experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.