Abstract
A methodology is developed to measure the adhesion force and the work of adhesion between aerosols generated in very-high-temperature reactors (VHTRs) and interacting with structural materials. The method uses an interactive system of a silver particle interacting with Haynes 230 (H230) surfaces, compares the measured data with theoretical values, and uses an atomic force microscope in an air environment glove box with ambient temperature of 20.27°C and relative humidity of 34.97%. The adhesion force data are obtained for a silver particle interacting with H230 under four different surface conditions including “as received” and after oxidation for 5, 10, and 15 min, respectively. It was found that the JKR (Johnson-Kendall-Roberts) theory predicted values that were up to three orders of magnitude higher than the experimental data. In contrast, the inclusion of surface roughness from both the particle and H230 samples in the calculations produced results that are one order of magnitude higher than the experimental data. These comparisons provide insight into the significant influence that surface roughness has on adhesion force. A range of values of 0.02 to 0.3 μN was obtained from the adhesion force distributions of measured data that can be used as bounds on forces that can be produced in a silver-H230 interactive system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.