Abstract

Materials with appropriate adhesive properties are suitable for the fabrication of bionic adhesive pads. In this study, a novel polydimethylsiloxane (PDMS) material enhanced with two types of crosslinkers, carbon nanotubes and graphene sheets, was fabricated. The Contact Angle (CA) and cross-sectional morphology of the new material were investigated and observed using a CA meter and Scanning Electron Microscopy (SEM), respectively. CA measurements indicate that the surface energy of the novel material is twice that of the common PDMS material. SEM observations show that carbon nanotubes and graphene sheets are well dispersed in the polymer, a feature that improves the mechanical properties of the new material. The adhesive performance of this novel composite was tested on an in-house fabricated friction machine. Results show that at a preload of only 50 mN, the adhesion of the novel PDMS material is up to ∼3.7 times that of common PDMS. The maximum macroscale shear strength and normal adhesion reach 4 N·cm−2 and 1 N·cm−2, respectively. The adhesive capability of the material is maintained even after hundreds of times of repeated use. This novel material exhibits excellent adhesion, sufficiently high elastic modulus and high repeatability at low preloads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.