Abstract

Here, we present a study of adhesion between cadherin fragments using giant unilamellar vesicles and supported bilayers. These objects are partially made of nickel chelating lipids and are subsequently decorated with proteins bearing a 6His tag. Initially, we observed their fixation and correct orientation by using a fluorescent protein, the green fluorescent protein (GFP)-6His. The adhesive behavior of E-cadherin functionalized giant vesicles and supported bilayers was studied as a function of the calcium concentration and of the protein functionality by reflection interference microscopy. We show that such a system retains specific cadherin-mediated adhesion and could be used to study the statics and dynamics of adhesive plaques as well as to gain insight into the fundamental mechanisms of cellular adhesion at the mesoscopic scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.