Abstract

Evaluate the adhesive behavior of conventional and high-translucent zirconia after surface conditioning and hydrothermal aging. Conventional (ZrC) and high-translucent zirconia (ZrT) specimens were divided into six groups: without surface treatment (ZrC and ZrT), air-borne particle abrasion with 50-μm Al2 O3 sized particles (ZrC-AO and ZrT-AO), and tribochemical treatment with 30-μm silica modified Al2 O3 sized particles (ZrC-T and ZrT-T). Zirconia specimens were treated using an MDP-containing universal adhesive and bonded to two resins blocks with an adhesive luting cement. Microbar specimens with cross-sectioned areas of 1 mm2 were achieved. Half of the microbars were subjected to hydrothermal aging. Bond strength was evaluated by microtensile bond strength test and statistically evaluated by the Weibull analysis. Roughness of the ZrC-AO and ZrT-AO groups were statistically higher. Bond strength analysis revealed higher bond strength for ZrC-AO and ZrC-T groups compared to ZrT-AO and ZrT-T, respectively. Mixed failure was the most frequent for the mechanically treated groups, while no cohesive failures were obtained. Lower values of bond strength were obtained for the mechanically treated high-translucent zirconia groups when compared to their conventional zirconia counterparts. Mechanical surface treatment significantly improved the bond strength to conventional and high-translucent zirconia. Mechanical surface treatment (air-borne particle abrasion or tribochemical treatment) associated with the use of universal adhesives containing MDP could provide a durable bonding to conventional and high-translucent zirconia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.