Abstract

Type II carbon fibres (PAN-based) have been electrochemically oxidized in aqueous potassium nitrate to varying electron charge densities (0–4294 Cg-1). The fibres were subsequently characterized by angle-resolved X-ray photoelectron spectroscopy (ARXPS) and ion scattering spectroscopy (ISS) and the results were correlated to acid/base surface titrations and BET surface area measurements. Relative to the as-received fibres (commercially treated, but unsized), the electrochemical treatments increased the ARXPS O/C atomic ratios by approximately 50%–100% and the concentration of oxidized carbon became more uniform within the XPS sampling depth (≈10 nm). At the same time, the number of acidic functions titrated by sodium hydroxide rose from about 2.6 μeq g-1 to 1078 μeq g-1, and the BET surface area increased from 0.67 m2 g-1 to 2.9 m2 g-1. A large portion of the increase in acidic groups was due to the increased fibre oxidation below the XPS sampling depth. The surface densities of acidic functions (functions/nm2) determined from NaOH uptake and nitrogen BET surface area experiments were far larger than is physically possible. Thus, it is postulated that aqueous NaOH solutions are able to access a much larger surface region than can be measured by nitrogen BET. A model involving subsurface pores, voids, crevasses, etc., which become available via swelling during solvation in aqueous NaOH, but are at least partially closed off when dry (during BET measurements), was proposed. The quantity of acidic functions introduced (detected by NaOH) was directly proportional to the extent of oxidation as referenced to the electron charge density (C g-1). The ISS spectra suggest that the surface density of carbon/oxygen groups was also increased. Single-fibre fragmentation tests (using an epoxy resin matrix) revealed that in most cases the interfacial shear strengths (IFSS) increased with increasing ARXPS O/C atomic ratio probably due to enhanced fibre/matrix chemical bonding and/or mechanical interlocking. As the extent of the electrochemical oxidation progressed above 1500 C g-1 the IFSS of single filament specimens then began to decrease. This was due to a continuing decrease in filament tensile strength as the extent of electro-oxidation increased. The critical transfer length, Lc, also decreased from ∼0.36 mm to ∼0.18 mm as the extent of electro-oxidation proceeded. Electrochemically oxidized fibres were compared to nitric acid-oxidized fibres in terms of acidic groups generated, BET surface areas, acidic group surface densities, dye adsorption with methylene blue and the role of aqueous NaOH in exposing some of the microstructure created by oxidative processes. © 1998 Kluwer Academic Publishers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.