Abstract

The reliability of microelectronic components is profoundly influenced by the fracture resistance of the polymer/inorganic interfaces and by the progressive debonding of these interfaces in aqueous environments. Consequently, fatigue (slow) crack growth in epoxy/glass interfaces bonded with the silane coupling agent 3-aminopropyltriethoxysilane (3-APES) was studied under static and cyclic loading at 23°C and in either dry or humid conditions using the double cleavage drilled compression (DCDC) test. Crack growth rates under cyclic loading were significantly greater than under static loading, indicating that stress corrosion effects are negligible and that crack tip plasticity controls cyclic fatigue crack growth at silane (3-APES) bonded epoxy/glass interfaces. After aging at 94°C in water, these silane bonded epoxy/glass interfaces exhibited somewhat greater resistance to cyclic fatigue crack growth than the unaged samples; however, after aging at 98°C in water cyclic fatigue crack growth became cohesive and fractal in nature. Mechanisms for fatigue crack growth at silane (3-APES) bonded epoxy/glass interfaces are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call