Abstract

With the advent of copper metallization in interconnect structures, new barrier layers are required to prevent copper diffusion into adjacent dielectrics and the underlying silicon. The barrier must also provide adequate adhesion to both the dielectric and copper. While Ta and TaN barrier layers have been incorporated for these purposes in copper metallization schemes, little quantitative data exist on their adhesive properties. In this study, the critical interface fracture energy and the subcritical debonding behavior of ion-metal-plasma sputtered Ta and TaN barrier layers in Cu interconnect structures were investigated. Specifically, the effects of interfacial chemistry, Cu layer thickness, and oxide type were examined. Behavior is rationalized in terms of relevant reactions at the barrier/dielectric interface and plasticity in adjacent metal layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.