Abstract

The adhesion and detachment of polymer and solid substrate surfaces play important roles in many engineering applications such as for designing adhesives, biomedical adhesives, adhesive tapes, robust protective coatings, biomedical scaffolds, prosthetic devices (e.g., artificial joints and implants), and fabrication of micro- and nanoelectromechanical devices. In this work, a surface forces apparatus (SFA) coupled with top-view optical microscopy was employed to measure the adhesion between thin polystyrene (PS) films and a mica substrate to probe their detachment behaviors. Various factors, including molecular weight (MW), contact time, and polarity-enhancing UV/ozone treatment, were examined. The results show that increased chain-end density, chain mobility, and segment polarity can all contribute to enhanced adhesion strength for both the “symmetric” PS–PS and “asymmetric” PS–mica systems but attributed to different adhesion/detachment mechanisms. For the asymmetric PS–mica system, the increased chain-...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call