Abstract

Over 1,560 non-food contact surface swabs and raw meat ingredient samples were collected from three ready-to-eat meat processing plants (520 from each plant) from 1998 to 1999, resulting in the recovery of 259 isolates of Listeria obtained from postprocess areas including drains, floors, garbage bins, cart wheels, walls, equipment surfaces, tables, brooms, pallet jacks, hoses, ladders, and waste chutes. We further examined 246 of the 259 isolates for adherence phenotype and used PCR to identify those that were Listeria monocytogenes. Adherence was classified as weak, moderate, or strong depending on results obtained with all Listeria isolates by using a fluorescent microplate adherence assay. Among the 246 isolates, there were 61 weakly, 148 moderately, and 37 strongly adherent Listeria, of which 130 (53%) were found to be L. monocytogenes. Plants A and B provided similar recoveries of 39 (7.5%) and 43 (8.3%) Listeria-positive isolates, including 9 (23.1% of Listeria) and 41 (95.3% of Listeria) identified as L. monocytogenes, respectively, that were weakly or moderately adherent. In plant C, we recovered 164 Listeria-positive samples (31.5% isolation rate), which included 80 L. monocytogenes-positive samples (49.8% of Listeria spp.), 52 of which were moderately adherent, as well as all 9 strongly adherent isolates of L. monocytogenes obtained in this study. Adherence properties of Listeria may allow persistence and recurrence in plant environments, potentially increasing the chance of eventual product contamination, and this emphasizes the need for sanitary approaches to prevent colonization by Listeria as well as product antimicrobial interventions should the sanitation barrier be breached.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call