Abstract
AbstractTo effectively enhance the ability to acquire information by making full use of the complementary features of infrared and visible images, the widely used image fusion algorithm is faced with challenges such as information loss and image blurring. In response to this issue, the authors propose a dual‐branch deep hierarchical fusion network (ADF‐Net) guided by an attention mechanism. Initially, the attention convolution module extracts the shallow features of the image. Subsequently, a dual‐branch deep decomposition feature extractor is introduced, where in the transformer encoder block (TEB) employs remote attention to process low‐frequency global features, while the CNN encoder block (CEB) extracts high‐frequency local information. Ultimately, the global fusion layer based on TEB and the local fusion layer based on CEB produce the fused image through the encoder. Multiple experiments demonstrate that ADF‐Net excels in various aspects by utilizing two‐stage training and an appropriate loss function for training and testing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.