Abstract
We construct finite volume schemes of arbitrary order of accuracy in space and time for solving nonlinear reaction–diffusion partial differential equations. The numerical schemes, written in conservative form, result from extending the Godunov and the ADER frameworks, both originally developed for approximating solutions to hyperbolic equations. The task is to define numerical fluxes and numerical sources. In the ADER approach, numerical fluxes are computed from solutions to the Derivative Riemann Problem (DRP) (or generalized Riemann problem, or high-order Riemann problem), the Cauchy problem in which the initial conditions either side of the interface are smooth functions, polynomials of arbitrary degree, for example. We propose, and systematically asses, a general DRP solver for nonlinear reaction–diffusion equations and construct corresponding finite volume schemes of arbitrary order of accuracy. Schemes of 1st to 10-th order of accuracy in space and time are implemented and systematically assessed, with particular attention paid to their convergence rates. Numerical examples are also given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.