Abstract

In this paper we apply the ADER approach to the Discontinuous Galerkin (DG) framework for the two-dimensional linearized Euler equations. The result is an efficient high order accurate single-step scheme in time which uses less storage than Runge–Kutta DG schemes, especially for very high order of accuracy. The aim is to obtain an arbitrarily accurate scheme in space and time on unstructured grids for accurate noise propagation in the time domain in very complex geometries. We will present numerical convergence rates for ADER-DG methods up to 10th order of accuracy in space and time on structured and unstructured meshes. To cite this article: M. Dumbser, C.-D. Munz, C. R. Mecanique 333 (2005).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call