Abstract
The ADER scheme for solving systems of linear, hyperbolic partial differential equations in two-dimensions is presented in this paper. It is a finite-volume scheme of high order in space and time. The scheme is explicit, fully discrete and advances the solution in one single step. Several numerical tests have been performed. In the first test case the dissipation and dispersion behaviour of the schemes are studied in one space dimension. Dispersion as well as dissipation effects strongly influence the discrete wave propagation over long distances and are very important for, e.g., aeroacoustical calculations. The next test, the so-called co-rotating vortex pair, is a demonstration of the ideas of the two-dimensional ADER approach. The linearised Euler equations are used for the simulation of the sound emitted by a co-rotating vortex pair.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.