Abstract

Fetal alcohol spectrum disorders (FASD) are the leading non-genetic cause of neurodevelopmental disability in children. Although alcohol is clearly teratogenic, environmental factors such as gravidity and socioeconomic status significantly modify individual FASD risk despite equivalent alcohol intake. An explanation for this variability could inform FASD prevention. Here we show that the most common nutritional deficiency of pregnancy, iron deficiency without anemia (ID), is a potent and synergistic modifier of FASD risk. Using an established rat model of third trimester-equivalent binge drinking, we show that ID significantly interacts with alcohol to impair postnatal somatic growth, associative learning, and white matter formation, as compared with either insult separately. For the associative learning and myelination deficits, the ID-alcohol interaction was synergistic and the deficits persisted even after the offsprings’ iron status had normalized. Importantly, the observed deficits in the ID-alcohol animals comprise key diagnostic criteria of FASD. Other neurobehaviors were normal, showing the ID-alcohol interaction was selective and did not reflect a generalized malnutrition. Importantly ID worsened FASD outcome even though the mothers lacked overt anemia; thus diagnostics that emphasize hematological markers will not identify pregnancies at-risk. This is the first direct demonstration that, as suggested by clinical studies, maternal iron status has a unique influence upon FASD outcome. While alcohol is unquestionably teratogenic, this ID-alcohol interaction likely represents a significant portion of FASD diagnoses because ID is more common in alcohol-abusing pregnancies than generally appreciated. Iron status may also underlie the associations between FASD and parity or socioeconomic status. We propose that increased attention to normalizing maternal iron status will substantially improve FASD outcome, even if maternal alcohol abuse continues. These findings offer novel insights into how alcohol damages the developing brain.

Highlights

  • Alcohol abuse is a major global health concern

  • Several studies have suggested that iron status may have a unique, modifying influence upon the clinical outcomes in Fetal Alcohol Spectrum Disorders (FASD) and this work provides the first direct demonstration for this hypothesis

  • We have demonstrated that maternal nutritional status, and maternal iron insufficiency, is an important and powerful modifier of neurobehavior and growth in this rat model of FASD

Read more

Summary

Introduction

Alcohol abuse is a major global health concern. Among its devastating consequences is Fetal Alcohol Spectrum Disorders (FASD). FASD is the greatest non-genetic cause of neurodevelopmental disability in children, affecting 9.1–50 per 1000 live births and 68.0–89.2 per 1000 in populations where alcohol abuse is common [1,2,3]. Exposure of the developing brain to alcohol causes permanent neurological damage and a distinctive behavioral profile that affects learning, memory, attention, executive functions, and motor skills [4,5]. FASD prevention is challenging because of social stigmas surrounding alcohol abuse, the limited use of perinatal alcohol screening, and the failure of many alcoholics to admit their drinking behavior. There is a high priority for treatments that ameliorate alcohol’s neurotoxicity and especially gestational interventions that do not require knowledge of alcohol abuse [6]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call