Abstract

The adenylyl cyclase signaling mechanism (ACSM) of relaxin H2 action was discovered and deciphered in mammalian muscles. A study of signaling blocks involved in ACSM of relaxin in comparison with that of insulin previously detected showed a close similarity throughout the post-receptor signaling chain of both hormones. The inhibitory action of tyrosine kinase blockers on the hormone AC activating effect indicates that the relaxin receptor involved in ACSM is likely to be of the tyrosine kinase type. However, a recent discovery of a relaxin receptor with serpentine architecture leaves open the question concerning the existence of receptor of the tyrosine kinase type. The structural-functional organization of the ACSM due to the action of relaxin-shown here for the first time-can be presented as the following signaling sequence: relaxin receptor ==>G(i) protein (betagamma-dimer) ==>phosphatidylinositol 3-kinase ==>protein kinase Czeta ==>G(s) protein ==>adenylyl cyclase. According to our hypothesis, the regulatory action of the insulin superfamily peptides on cell processes (proliferation, apoptosis, and metabolism) is mediated via ACSM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.