Abstract

Adenylyl cyclase is part of a biochemical network that controls cell differentiation in Dictyostelium discoideum. At a certain stage of development the enzyme is rhythmically activated, with periods of about 8 min. These oscillations are superimposed upon an increase of the basal activity extending over a period of hours. The basal activity remains low in a mutant blocked at an early stage of development. In strain Ax-2 two periods of strongly increasing basal activity have been found: the first from 2 to 4 h after the end of the growth phase, the other begining at about 8 h.Based on the periodic regulation of adenylyl cyclase, cyclic AMP is released into the extracellular space in the form of pulses. Application of cyclic-AMP pulses, but not its continuous influx, stimulates the increase of basal adenylyl cyclase activity. Two other constituents of the cyclic-AMP signal system, cyclic-AMP receptors and cell-surface phosphodiesterase, are similarly controlled. The principal importance of positive feedback loops in a network controlling cell differentiation is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.