Abstract

We have previously shown that stimulation of cortical cultures containing both neurons and astrocytes with the β-adrenergic agonist isoproterenol (ISO) results in transport of cAMP from astrocytes followed by extracellular hydrolysis to adenosine [Rosenberg et al. J. Neurosci. 14 (1994) 2953–2965]. In this study we found that the endogenous catecholamines epinephrine (EPI) and norepinephrine (NE), but not dopamine, serotonin, or histamine, all at 10 μM, significantly stimulated intracellular cAMP accumulation, cAMP transport, and extracellular adenosine accumulation in cortical cultures. Detailed dose-response experiments were performed for NE and EPI, as well as ISO. For each catecholamine, the potencies in evoking intracellular cAMP accumulation, cAMP transport, and extracellular adenosine accumulation were similar. These data provide additional evidence that a single common mechanism, namely β-adrenergic mediated activation of adenylyl cyclase, underlies intracellular cAMP accumulation, cAMP transport, and extracellular adenosine accumulation. It appears that regulation of extracellular adenosine levels via cAMP transport and extracellular hydrolysis to adenosine may be a final common pathway of neuromodulation in cerebral cortex for catecholamines, and, indeed, any substance whose receptors are coupled to adenylyl cyclase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.