Abstract
Osteocytes are accepted as the primary mechanosensing cell in bone, but how they translate mechanical signals into biochemical signals remains unclear. Adenylyl cyclases (AC) are enzymes that catalyze the production of second messenger cyclic adenosine monophosphate (cAMP). Osteocytes display a biphasic, cAMP response to fluid shear with an initial decrease in cAMP concentrations and then an increased concentration after sustained mechanical stimulation. To date, AC6, a calcium-inhibited AC, is the primary isoform studied in bone. Since osteocytes are calcium-responsive mechanosensors, we asked if a calcium-stimulated isoform contributes to mechanotransduction. Using a transcriptomic dataset of MLO-Y4 osteocyte-like cells from the NIH Gene Expression Omnibus, we identified AC3 as the only calcium-stimulated isoform expressed. We show that inhibiting AC3 in MLO-Y4 cells results in decreased cAMP-signaling with fluid shear and increased osteogenic response to fluid flow (measured as Ptgs2 expression) of longer durations, but not shorter. AC3 likely contributes to osteocyte mechanotransduction through a signaling axis involving the primary cilium and GSK3β. We demonstrate that AC3 localizes to the primary cilium, as well as throughout the cytosol and that fluid-flow regulation of primary cilia length is altered with an AC3 knockdown. Regulation of GSK3β is downstream of the primary cilium and cAMP signaling, and with western blots we found that GSK3β inhibition by phosphorylation is increased after fluid shear in AC3 knockdown groups. Our data show that AC3 contributes to osteocyte mechanotransduction and warrants further investigation to pave the way to identifying new therapeutic targets to treat bone disease like osteoporosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.