Abstract

Bordetella pertussis, the bacterium that causes whooping cough, secretes an adenylate cyclase toxin (ACT) that must be post-translationally palmitoylated in the bacterium cytosol to be active. The toxin targets phagocytes expressing the CD11b/CD18 integrin receptor. It delivers a catalytic adenylate cyclase domain into the target cell cytosol producing a rapid increase of intracellular cAMP concentration that suppresses bactericidal functions of the phagocyte. ACT also induces calcium fluxes into target cells. Biochemical, biophysical and cell biology approaches have been applied here to show evidence that ACT and integrin molecules, along with other raft components, are rapidly internalized by the macrophages in a toxin-induced calcium rise-dependent process. The toxin-triggered internalisation events occur through two different routes of entry, chlorpromazine-sensitive receptor-mediated endocytosis and clathrin-independent internalisation, maybe acting in parallel. ACT locates into raft-like domains, and is internalised, also in cells devoid of receptor. Altogether our results suggest that adenylate cyclase toxin, and maybe other homologous pathogenic toxins from the RTX (Repeats in Toxin) family to which ACT belongs, may be endowed with an intrinsic capacity to, directly and efficiently, insert into raft-like domains, promoting there its multiple activities. One direct consequence of the integrin removal from the cell surface of the macrophages is the hampering of their adhesion ability, a fundamental property in the immune response of the leukocytes that could be instrumental in the pathogenesis of Bordetella pertussis.

Highlights

  • Adenylate cyclase toxin (ACT) is an essential virulence factor secreted by Bordetella pertussis, the bacterium that causes whooping cough [1]

  • We explored the possibility that the calcium influx induced by ACT could induce the internalisation of the toxin and/or of its receptor in macrophages, the integrin CD11b/CD18, and the role that raft-like membrane domains might have in such a process

  • In J774A.1 macrophages incubated with ACT, the surface staining for the toxin, measured by flow cytometry, decreased in a few minutes (Fig. 1A)

Read more

Summary

Introduction

Adenylate cyclase toxin (ACT) is an essential virulence factor secreted by Bordetella pertussis, the bacterium that causes whooping cough [1]. This severe childhood disease remains endemic worldwide despite extensive vaccination programmes [2]. Upon binding to its cell surface receptor, the aMb2 integrin [7], ACT becomes an integral membrane protein and inserts its Nterminal adenylyl cyclase domain (AC domain) into the cytosol of the target cell. ACT can form cationselective small pores, independent of AC domain translocation, which permeabilise cell membranes at high toxin concentrations [10,11]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call