Abstract
The interaction between fibrogenic cells and extracellular matrix plays a role in liver fibrosis, yet the mechanisms are largely unknown. Secreted protein, acidic and rich in cysteine (SPARC) is a matricellular glycoprotein that is expressed by hepatic stellate cells and is overexpressed in fibrotic livers. We investigated the in vivo role of SPARC in experimentally induced liver fibrosis in rats. A recombinant adenovirus carrying antisense SPARC was constructed (AdasSPARC). Advanced liver fibrosis was induced in Sprague-Dawley rats by prolonged intraperitoneal administration of thioacetamide. Animals received injections of AdasSPARC or Ad beta gal (control adenovirus) via the tail vein and directly into the liver 1 week after the first dose. The pathological changes in liver tissues and indices of fibrosis were assessed at eight weeks. Expression of SPARC, transforming growth factor (TGF)-beta and alpha-smooth muscle actin were evaluated by quantitative real-time polymerase chain reaction, western blotting, enzyme-linked immunosorbent assay and immunohistochemistry. Hepatic SPARC expression significantly increased during the development of liver fibrosis. AdasSPARC markedly attenuated the development of hepatic fibrosis in rats treated with thiocetamide, as assessed by decreased collagen deposition, lower hepatic content of hydroxyproline and less advanced morphometric stage of fibrosis. AdasSPARC treatment reduced inflammatory activity (Knodell score) and suppressed transdifferentiation of hepatic stellate cell to the myofibroblasts like phenotype in vivo. Furthermore, in vitro inhibition of SPARC on hepatic stellate cells decreases the production of TGF-beta. This is the first study to demonstrate that knockdown of hepatic SPARC expression ameliorates thioacetamide-induced liver fibrosis in rats with chronic liver injury. SPARC is a potential target for gene therapy in liver fibrosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.