Abstract

We report that delivery of first-generation replication-deficient adenovirus (RDAd) vectors into primary human fibroblasts is associated with the induction of natural killer (NK) cell-mediated cytolysis in vitro. RDAd vector delivery induced cytolysis by a range of NK cell populations including the NK cell clone NKL, primary polyclonal NK lines and a proportion of NK clones (36 %) in autologous HLA-matched assays. Adenovirus-induced cytolysis was inhibited by antibody blocking of the NK-activating receptor NKG2D, implicating this receptor in this function. NKG2D is ubiquitously expressed on NK cells and CD8+ T cells. Significantly, γ-irradiation of the vector eliminated the effect, suggesting that breakthrough expression from the vector induces at least some of the pro-inflammatory responses of unknown aetiology following the application of RDAd vectors during in vivo gene delivery.

Highlights

  • We report that delivery of first-generation replication-deficient adenovirus (RDAd) vectors into primary human fibroblasts is associated with the induction of natural killer (NK) cell-mediated cytolysis in vitro

  • Adenovirus-induced cytolysis was inhibited by antibody blocking of the NK-activating receptor NKG2D, implicating this receptor in this function

  • Replication-deficient adenovirus (RDAd) vectors are used extensively as vehicles to promote in vivo gene expression both in experimental animal models and human gene therapy

Read more

Summary

Introduction

We report that delivery of first-generation replication-deficient adenovirus (RDAd) vectors into primary human fibroblasts is associated with the induction of natural killer (NK) cell-mediated cytolysis in vitro. RDAd vector delivery induced cytolysis by a range of NK cell populations including the NK cell clone NKL, primary polyclonal NK lines and a proportion of NK clones (36 %) in autologous HLA-matched assays. RDAd vector delivery to human fibroblast targets reproducibly stimulated cytolysis by polyclonal NK lines from all donors tested (Fig. 1a).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call