Abstract

BackgroundColorectal cancer is the second leading cause of cancer-related mortality and frequently presents with locally advanced or metastatic disease. Adenovirus (Ad) vectors are important gene delivery agents because they offer efficient and broad tissue transduceability. However, their ability to penetrate through multicell layers in colorectal cancers and maintain expression in colon tumor-related hypoxic conditions has yet to be analyzed. Furthermore, their broad tissue tropism presents safety concerns. Materials and MethodsAn ex vivo cultured patient tumor sample model was employed to examine Ad transduction of colorectal tumors. ResultsResults obtained from Ad delivery of the firefly luciferase (FLuc) reporter gene indicated that colon tumor tissue was more amenable to Ad transduction than other tumor histologic types examined (breast and ovary). Ad transduction levels were significantly higher than a range of viral and nonviral methods examined in patient colon tissue. Control of transgene expression using the CXC chemokine receptor 4 (CXCR4) promoter was examined as a strategy to confine expression to tumor cells. An Ad construct carrying FLuc under the control of the human CXCR4 promoter demonstrated low reporter gene expression compared with the ubiquitously expressing cytomegalovirus promoter in normal colon and liver tissue while providing high expression in tumors, demonstrating a ‘tumour-on' and ‘normal-off' phenotype in patient tissue. The effects of changing hypoxia on Ad-related transgene expression were examined in an in vitro model of hypoxic conditions relevant to clinical colorectal tumors. Reporter gene expression varied depending on the level of hypoxia, with significantly reduced levels observed with prolonged hypoxia. However, transgene expression was robust in the cycling hypoxic conditions relevant to colorectal tumors. ConclusionThis study provides novel, clinically relevant data demonstrating the potential for efficient gene delivery to colorectal tumors using Ad.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.