Abstract

Atherosclerosis is characterized by an early inflammatory response involving proinflammatory mediators such as platelet-activating factor (PAF)-like phospholipids, which are inactivated by PAF-acetylhydrolase (PAF-AH). The effect of adenovirus-mediated expression of PAF-AH on injury-induced neointima formation and spontaneous atherosclerosis was studied in apolipoprotein E-deficient mice. Intravenous administration of an adenovirus (5 x 10(8) plaque-forming units) directing liver-specific expression of human PAF-AH resulted in a 3.5-fold increase of plasma PAF-AH activity at day 7 (P<0.001); this was associated with a 2.4- and 2.3-fold decrease in malondialdehyde-modified LDL autoantibodies and the lysophosphatidylcholine/phosphatidylcholine ratio, respectively (P<0.001 for both). Non-HDL and HDL cholesterol levels in PAF-AH-treated mice were similar to those of control virus-treated mice. Seven days after virus injection, endothelial denudation of the common left carotid artery was induced with a guidewire. Neointima formation was assessed 18 days later. PAF-AH gene transfer reduced oxidized lipoproteins by 82% (P<0.001), macrophages by 69% (P=0.006), and smooth muscle cells by 84% (P=0.002) in the arterial wall. This resulted in a 77% reduction (P<0.001) of neointimal area. Six weeks after adenovirus-mediated gene transfer, spontaneous atherosclerotic lesions in the aortic root were analyzed. PAF-AH gene transfer reduced atherosclerotic lesions by 42% (P=0.02) in male mice, whereas a nonsignificant 14% reduction was observed in female mice. Basal and PAF-AH activity after gene transfer were higher in male mice than in female mice (P=0.01 and P=0.04, respectively). Gene transfer of PAF-AH inhibited injury-induced neointima formation and spontaneous atherosclerosis in apolipoprotein E-deficient mice. Our data indicate that PAF-AH, by reducing oxidized lipoprotein accumulation, is a potent protective enzyme against atherosclerosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.