Abstract
Human islets induce an injurious clotting reaction at the time of transplantation. A potential strategy to counteract this reaction would be to allow the islets to express hirudin, a protein with direct anticoagulative activity. Human islets were transduced with an adenoviral vector encoding hirudin, an empty corresponding vector, or left untreated. Islet culture supernatants were analyzed for hirudin using an ELISA, a chromogenic substrate assay based on the thrombin-binding properties of hirudin and in a whole blood viscosimetry assay. Immunohistochemical evaluation and determination of hirudin content revealed an abundant expression of hirudin after transduction. Hirudin content in transduced islets was in the range of the insulin content levels. A delay in human whole blood clotting time could be observed after addition of supernatants taken from islet cultures expressing hirudin. However, transduced islets showed an impaired glucose-stimulated insulin release, but could readily be retrieved 6 weeks after transplantation to athymic mice. A marked expression and secretion of hirudin with functional capacity can be induced in human islets using an adenoviral vector. The impairment in glucose-stimulated insulin release in hirudin-secreting islets, compared to controls, indicates that the additional protein synthesis affects the functional capacity of the islets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.