Abstract
Several human and animal myopathies, such as malignant hyperthermia (MH), central core disease and equine recurrent exertional rhabdomyolysis (RER) are confirmed or thought to be associated with dysfunction of skeletal muscle calcium regulation. For some patients in whom the genetic cause is unknown, or when mutational analysis reveals genetic variants with unclear pathogenicity, defects are further studied through use of muscle histopathology and in vitro contraction tests, the latter in particular, when assessing responses to ryanodine receptor agonists, such as caffeine. However, since muscle biopsy is not always suitable, researchers have used cultured cells to model these diseases, by examining calcium regulation in myotubes derived from skin, following forced expression of muscle-specific transcription factors. Here we describe a novel adenoviral vector that we used to express equine MyoD in dermal fibroblasts. In permissive conditions, transduced equine and human fibroblasts differentiated into multinucleated myotubes. We demonstrate that these cells have a functional excitation-calcium release mechanism and, similarly to primary muscle-derived myotubes, respond in a dose-dependent manner to increasing concentrations of caffeine. MyoD-induced conversion of equine skin-derived fibroblasts offers an attractive method for evaluating calcium homeostasis defects in vitro without the need for invasive muscle biopsy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.