Abstract

Matrix metalloproteinase 9 (MMP-9) is known to play a major role in cell migration and invasion in both physiological and pathological processes. Our previous work has shown that increased MMP-9 levels are associated with human glioma tumor progression. In this study, we evaluated the ability of an adenovirus containing a 528 bp cDNA sequence in antisense orientation to the 5' end of the human MMP-9 gene (Ad-MMP-9AS) to inhibit the invasiveness and migratory capacity of the human glioblastoma cell line SBN19 in in vitro and in vivo models. Infection of glioma cells with Ad-MMP-9AS reduced MMP-9 enzyme activity by approximately 90% compared with mock- or Ad-CMV-infected cells. Migration and invasion of glioblastoma cells infected with Ad-MMP-9AS were significantly inhibited relative to Ad-CMV-infected controls in spheroid and Matrigel assays. Intracranial injections of SNB19 cells infected with Ad-MMP-9AS did not produce tumors in nude mice. However, injecting the Ad-MMP-9AS construct into subcutaneous U87MG tumors in nude mice caused regression of tumor growth. These results support the theory that adenoviral-mediated delivery of the MMP-9 gene in the antisense orientation has therapeutic potential for treating gliomas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.