Abstract
Tumor-associated stromal cells constitute a major hurdle in the antitumor efficacy with oncolytic adenoviruses. To overcome this biological barrier, an in vitro bioselection of a mutagenized AdwtRGD stock in human cancer-associated fibroblasts (CAFs) was performed. Several rounds of harvest at early cytopathic effect (CPE) followed by plaque isolation led us to identify one mutant with large plaque phenotype, enhanced release in CAFs and enhanced cytotoxicity in CAF and several tumor cell lines. Whole genome sequencing and functional mapping identified the truncation of the last 17 amino acids in C-terminal end of the i-leader protein as the mutation responsible for this phenotype. Similar mutations have been previously isolated in two independent bioselection processes in tumor cell lines. Importantly, our results establish the enhanced antitumor activity in vivo of the i-leader C-terminal truncated mutants, especially in a desmotic fibroblast-embedded lung carcinoma model in mice. These results indicate that the i-leader truncation represents a promising trait to improve virotherapy with oncolytic adenoviruses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.